Info
Info
News Article

Is The Energy System Really Ready For Sustainable Energy?

New research into sustainable energy systems focuses on integrating renewable and nuclear power plants into the electrical grid "“ a topic high on the agenda for scholars, industry and policy makers.

Dr Giorgio Locatelli, from the School of Engineering at the University of Lincoln, UK, has published a series of research papers on key aspects of sustainable energy systems in the leading academic journal Energy. The main findings of which are outlined in the following report.
"'Electrical grids can work if, and only if, the amount of electricity inserted into the grid from power plants is matched, second by second, to the amount of electricity extracted from the grid by consumers'. If this doesn't happen there are black-outs.

In order to maintain this equilibrium we must focus on two things: demand and supply of electricity into the grid. Firstly, we must predict the consumption of electricity (as has always been the case) and secondly, we must have the capability to 'tune' power plants to produce the exact amount of energy required. This second task is getting more difficult, especially with intermittent renewable sources such as wind and solar. Supply here is of course determined by that most notoriously unpredictable of variables: the weather.

There are two options to balance supply with demand. We can store electricity when it is produced but not needed so it can be inserted back into the grid when required, or use the electricity for other 'off-grid applications' (for example, desalinating salt water to produce fresh water) in periods of low demand, such as during the night or at weekends.

Over the last decade electricity production from renewable sources has increased across the world. In Europe, where the further development of large hydroelectric plants is now limited by the shortage of new locations, solar, biomass and particularly wind farms will become more prominent in the renewable energy mix over the coming years.

The increasing penetration of variable renewable energy technologies in power provision is already raising difficult questions for the overall efficient management of electrical grids. Many of these technologies require flexible power systems that can react quickly to variability in supply and demand.

Alongside academic colleagues, I have been working to develop a new methodology to assess the economics of energy storage plants. We believe our findings have three key implications for how the energy industry adapts to this challenge.

Firstly our research suggests the possibility of establishing an 'optimum size capacity' for storage plants. Secondly, without subsidies, none of the existing energy storage technologies are economically sustainable. Thirdly, the possibility of operating energy storage plants for multiple purposes was identified as a mean of decreasing subsidies for the energy storage technologies.

The nuclear option

Other than renewables, the only other technology currently available to produce electricity with a negligible amount of carbon dioxide emissions is nuclear power. Small Modular Reactors (SMRs) are part of a new generation of nuclear power plant designs receiving increasing attention from industry and government.

Modern SMRs are a relatively 'new product' in the nuclear industry, but there is a growing interest in the technology, both in the UK and overseas. The attractiveness of SMRs, as an investment, is mostly based on the principle of modular deployment. Their small size makes them a good option for locations that cannot accommodate large-scale plants and they also require limited upfront capital investment.

Given their fixed costs, nuclear reactors are considered a base load power technology -- a technology that must produce energy continuously 24/7 to be economical. However, the combination of adding more nuclear power and intermittent sources of renewable energy -- such as solar and wind -- will require even greater flexibility and adaptability within the grid to compensate for the difference between energy supply and demand at various times.

Currently, nuclear reactors adapt to electricity demand -- called 'load following' -- by modifying the reactivity within the core. By doing so, power output is reduced, with a waste of potential energy. It also places a thermo-mechanical stress on the plant whenever the power regime is changed. Unlike gas-fuelled power plants, there is not a relevant cost saving in operating a nuclear reactor at a lower power level due to the substantial fixed nature of nuclear costs.

In our research, we tested the idea of keeping the primary circuit at full power and following the load curve by using the power to cogenerate valuable by-products. Cogeneration is the use of a heat engine or power station to simultaneously generate electricity and other products.

We assessed the technical-economic feasibility of this approach when applied to Small Modular Reactors with two cogeneration technologies: algae-biofuel and desalinisation.

Our results show that the power required by an algae-biofuel plant is not sufficient to justify the load following approach. However, it was viable in the case of desalination. Our successive economic analysis demonstrates the economic viability of the desalination approach in several scenarios. In conclusion, the coupling of SMRs with a desalination plant is a realistic solution to perform efficient load following in nuclear power generation.

Obstacles to more SMRs

If SMRs could make a valuable contribution to the energy supply then the next step would be to assess the legal feasibility to make this approach a reality.

This of course sounds simpler than it is! Working with Tristano Sainati, one of my PhD students at the University of Lincoln, we concluded that the tailoring of the licensing process for SMRs, as part of a strong political commitment by several countries, is essential.

There is not a single international authority with power to make this happen and the various national regulatory bodies have limited ability to reshape their own licensing frameworks. A political commitment to SMRs would require a major set of legal reforms, deeply modifying the architecture and principles governing licensing processes. This is unlikely to happen in the short-term and represents one of the main obstacles preventing the widespread adoption of this promising technology."

NextEnergy Capital Acquires Its First Asset In Portugal 17.4MWp Solar PV Project
Habitat Enerdy Enters Balancing Mechanism With Largest Battery
Sharp Launches New 440W Half-cut Cell PV Panel
TLT Advises Innova Energy On £30m Refinancing Of 57 MW Solar Portfolio
Oakapple Renewable Energy Appoint Stuart Gentry To Head Business Development
Everoze Creates Skyray To Design And Engineer Great Solar PV Projects
Solar Power As Rental Offer Launched By Aggreko
SOLARWATT Links With Easy Roof To Provide Building-integrated PV For Better-looking Buildings And Smart EV Charging
Sunstore Solar Launches WattGrid, A New Range Of Turnkey Off-grid Power Systems
Going Green In Lancashire – Hundreds Of Houses Installed With Solar Panels In Ground-breaking Project
FIMER Powers UK Largest Rooftop Solar Project
TLT Advises Santander On 30MW Flagship Battery Storage Project
Analysis Of UK Commercial Roof Space Shows Solar PV Film Can Achieve Net Zero Without Greenfield Sites
FRV And Harmony Energy To Develop Second UK Utility Scale Battery Project
Low Carbon Develop UK’s Largest Community-owned Solar Park
The Smarter E South America Postponed To October 18-20, 2021
Greencoat Renewables Announces First Transaction In Nordic Market
Power Roll Trials Solar PV To Power Up Himalayan Villages
Ingenious Invests In Electric Vehicle Charging Firm
New Innovation Set To Change Renewable Energy Market
Tandem PV Devices Feel The Heat
UK'S Largest Battery Ready To Balance The Grid
UK Green Tech Company Myenergi To Double Workforce By 2021
Sonnedix Named ESG Global Solar Power Generation Sector Leader By GRESB
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Smart Solar Magazine, the Smart Solar Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification} Array
Live Event